Group theoretical methods in Machine Learning

Risi Kondor
Columbia University

Tutorial at ICML 2007

Recall that under translation $f \mapsto f^{z}$ where

$$
f^{z}(x)=f\left(z^{-1} x\right)
$$

Goal: construct invariant functionals satisfying

$$
q\left(f^{z}\right)=q(z)
$$

Generalize to Lie groups and homogeneous spaces

Lie groups

"A group G is a Lie group if it is also a differentiable manifold on which the maps $x \mapsto x^{-1}$ and $(x, y) \mapsto x y$ are differentiable."
I. For any $g \in G$ and $b \in \mathbb{Z}$ there is a $g^{1 / b}$ satisfying $\left(g^{1 / b}\right)^{b}=g$.
2. Extend to real exponents g^{t} by continuity and $g^{-t}=\left(g^{t}\right)^{-1}$.
3. $\gamma(t)=g^{t}$ is a differentiable curve on the manifold and $\gamma(0)=1_{G}$.
4. $\{\gamma(t) \mid t \in \mathcal{R}\}$ is a subgroup and $\gamma(s) \gamma(t)=\gamma(s+t)$.
5. $\quad T_{g}=\left.\frac{d}{d t} \gamma(t)\right|_{1_{G}}$ is well defined and

$$
\gamma(t)=(\gamma(\delta))^{t / \delta}=\left(1_{G}+\delta T\right)^{t / \delta}=e^{t T} \quad \delta \rightarrow 0 .
$$

6. The tangent space has a basis $\left\{T_{1}, T_{2}, \ldots, T_{n}\right\}$ so

$$
g=\exp \left(\sum_{i=1}^{n} \alpha_{i} T_{i}\right) \quad \forall g \in G
$$

7. The generators $\left\{T_{1}, T_{2}, \ldots, T_{n}\right\}$ form an algebra.
8. Locally the structure of G is determined by the commutators $\left[T_{i}, T_{j}\right]=T_{i} T_{j}-T_{j} T_{i}$ because

$$
\exp (u) \exp (v)=\exp \left(u+v+\frac{1}{2}[u, v]+\frac{1}{12}[[u, v], v]-\ldots\right) .
$$

Example

How about when G acts on a space \mathcal{X} and $f: \mathcal{X} \rightarrow \mathbb{C}$?
\mathcal{X} is a homogeneous space of G if the orbit $\left\{g\left(x_{0}\right) \mid g \in G\right\}$ sweeps out \mathcal{X}.

In this case the translate of is defined

$$
f^{z}\left(g\left(x_{0}\right)\right)=f\left(\left(z^{-1} g\right)\left(x_{0}\right)\right)
$$

Example

SO(3) acts on S_{2} by

$$
x \mapsto R x
$$

$$
\begin{aligned}
& \text { If } x_{0}=(0,0,1) \text { then } \\
& \left\{R x_{0} \mid R \in \mathrm{SO}(3)\right\}
\end{aligned}
$$

sweeps out the entire sphere.
f also induces a function $f \uparrow^{G}(g)=f\left(g\left(x_{0}\right)\right)$.

$$
f^{z} \uparrow^{G}(g)=f\left(z^{-1} g\left(x_{0}\right)\right)=f \uparrow^{G}\left(z^{-1} g\right)=\left(f \uparrow^{G}\right)^{z}(g)
$$

In particular,

$$
\widehat{f^{z \uparrow G}}(\rho)=\rho(z) \widehat{f \uparrow^{G}}(\rho)
$$

So what does $f \uparrow^{G}$ look like?

The stabilizer $H=\left\{g \in G \mid g\left(x_{0}\right)=x_{0}\right\}$ is a subgroup of G.

$$
(g h)\left(x_{0}\right)=g\left(h\left(x_{0}\right)\right)=g\left(x_{0}\right) \quad \forall h \in H
$$

$\mathcal{X} \leftrightarrow$ set of cosets $g H=\{g h \mid h \in H\}$
$f \uparrow^{G}$ is constant on each $g H$ coset.

Example

$$
\begin{aligned}
& G=\mathrm{SO}(3) \\
& x_{0}=(0,0,1) \\
& S_{2}=\mathrm{SO}(3) / \mathrm{SO}(2)
\end{aligned}
$$

$$
x \quad \longleftrightarrow \quad R \cdot \mathrm{SO}(2)
$$

What does the Fourier transform of a $g H$ coset function look like?

Assume that ρ is $G>H>1$ adapted.

$$
\widehat{f}(\rho)=\sum_{g \in G / H} \rho(g) f(g H) \sum_{h \in H} \rho(h)
$$

$\sum_{h \in H} \rho(h)=\sum_{h \in H} \bigoplus_{\rho^{\prime}} \rho^{\prime}(h) \quad$ but $\quad \sum_{h \in H} \rho^{\prime}(h)=0$
unless ρ^{\prime} is the trivial representation.
Only those columns of $\widehat{f}(\rho)$ are non-zero where we have trivial ρ^{\prime}.

