Group theoretical methods in Machine Learning

Risi Kondor Columbia University

Tutorial at ICML 2007

Recall that under translation $f \mapsto f^z$ where

$$f^z(x) = f(z^{-1}x)$$

Goal: construct invariant functionals satisfying $q(f^z) = q(z) \label{eq:q}$

Generalize to Lie groups and homogeneous spaces

Lie groups

"A group G is a Lie group if it is also a differentiable manifold on which the maps $x \mapsto x^{-1}$ and $(x, y) \mapsto xy$ are differentiable." I. For any $g \in G$ and $b \in \mathbb{Z}$ there is a $g^{1/b}$ satisfying $(g^{1/b})^b = g$.

2. Extend to real exponents g^t by continuity and $g^{-t} = (g^t)^{-1}$.

3. $\gamma(t) = g^t$ is a differentiable curve on the manifold and $\gamma(0) = 1_G$.

4. $\{\gamma(t) \mid t \in \mathcal{R}\}$ is a subgroup and $\gamma(s)\gamma(t) = \gamma(s+t)$.

- 5. $T_g = \frac{d}{dt} \gamma(t)|_{1_G}$ is well defined and $\gamma(t) = (\gamma(\delta))^{t/\delta} = (1_G + \delta T)^{t/\delta} = e^{tT} \qquad \delta \to 0.$
- 6. The tangent space has a basis $\{T_1, T_2, \dots, T_n\}$ so $g = \exp\left(\sum_{i=1}^n \alpha_i T_i\right) \quad \forall g \in G.$
- 7. The generators $\{T_1, T_2, \ldots, T_n\}$ form an algebra.
- 8. Locally the structure of G is determined by the commutators $[T_i, T_j] = T_i T_j T_j T_i$ because $\exp(u) \exp(v) = \exp(u + v + \frac{1}{2}[u, v] + \frac{1}{12}[[u, v], v] \ldots).$

How about when G acts on a space \mathcal{X} and $f: \mathcal{X} \to \mathbb{C}$?

 \mathcal{X} is a homogeneous space of G if the orbit $\{g(x_0) \mid g \in G\}$ sweeps out \mathcal{X} .

In this case the translate of is defined

 $f^{z}(g(x_{0})) = f((z^{-1}g)(x_{0})).$

SO(3) acts on S_2 by $x \mapsto R x$

If $x_0 = (0, 0, 1)$ then { $Rx_0 \mid R \in SO(3)$ }

sweeps out the entire sphere.

f also induces a function $f\uparrow^G(g) = f(g(x_0))$.

$$f^{z}\uparrow^{G}(g) = f(z^{-1}g(x_{0})) = f\uparrow^{G}(z^{-1}g) = (f\uparrow^{G})^{z}(g)$$

In particular,

$$\widehat{f^z\uparrow^G}\!(\rho) = \rho(z)\;\widehat{f\uparrow^G}\!(\rho)$$

So what does $f \uparrow^G$ look like?

The stabilizer $H = \{ g \in G \mid g(x_0) = x_0 \}$ is a subgroup of G.

$$(gh)(x_0) = g(h(x_0)) = g(x_0) \qquad \forall h \in H$$

 $\mathcal{X} \quad \leftrightarrow \quad \text{set of cosets} \quad gH = \{ gh \mid h \in H \}$

 $f \uparrow^G$ is constant on each gH coset.

Example

$$G = SO(3)$$

 $x_0 = (0, 0, 1)$
 $S_2 = SO(3)/SO(2)$

$$x \longleftrightarrow R \cdot \mathrm{SO}(2)$$

What does the Fourier transform of a gH coset function look like?

Assume that ρ is G > H > 1 adapted.

$$\widehat{f}(\rho) = \sum_{g \in G/H} \rho(g) f(gH) \sum_{h \in H} \rho(h)$$

 $\sum_{h \in H} \rho(h) = \sum_{h \in H} \bigoplus_{\rho'} \rho'(h) \quad \text{but} \quad \sum_{h \in H} \rho'(h) = 0$

unless ρ' is the trivial representation.

Only those columns of $\widehat{f}(\rho)$ are non-zero where we have trivial ρ' .